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ABSTRACT

This report presents the results of an investigation into the
basic properties of a new type of electron gun for generating high
transverse velocity beams, the bifilar helix - Pierce gun or H-gqun. The
H-gun differs significantly from presently used magnetron injection guns
(MIGs) in that first a laminar, low transverse velocity beam is formed and
then transverse velocity is imparted by propagating the beam through the
magnetic fleld of a bifilar helix. In order to evaluate the H-qun, an
analytic and computational study was conducted to examine the
relationships between the magnetic fields (axial and helical), and the
beam properties after exiting the helical field. The effects of the helix
field entrancé profile, the helix-axial field gyroresonance, and helix
field gradients have been taken into account in the investigation. Based
on the results of this research, conditions have been specified which will
produce a high transverse velocity beam with low axial velocity spread.
In particular, it has been found that an adiabatic helix entrance profile
can provide a flexible means of generating high quality beams for
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gyro-devices.
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LIST OF SYMBOLS
{(cgs units are used unless otherwise indicated)

c speed of light in vacuum
e magnitude of electron charge
P m electron rest mass
Bi (= vi/c) normalized velocity
) Bo magnitude of total velocity
Y(=(1-802)'1/2) relativistic mass factor
8l magnitude of transverse velocity for an ideal
orbit in axial and ideal helical magnetic
fields
» Bzo axial velocity of ideal orbit
al= Bl/ Bzo) velocity ratio
A(= 1-(1+a2)'1/2) constant used in normalized orbit equations
5, §, transverse and axial velocity perturbations
of the ideal orbits
rl radius of ideal orbit
‘ ér radial perturbation of ideal orbit
By, on-axis magnitude of helix field
B, axial guide field
? Bt transition axial magnetic field
Wy, Uh cyclotron frequency of axial and helical
magnetic fields
By axial field in helix region
P B2 axial field in RF interaction region
R(= B;/B3) magnetic compression ratio
i n normalized axial magnetic field strength
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[ )

v normalized helix field strength

[ a helix radius
L helix period
ky (= 2w/L) helix wavenumber
® I helix current
HC helix cosine integral
HS helix sine integral
® e (= kya) normalized helix radius
£ = (kyz) normalized axial distance
Ih Kn modified Bessel functions of the first and
second kind
€
Ln modified Struve function
K complete elliptic integral of the first kind
! denotes derivative with respect to the argument
o
. denotes derivative with respect to time
() denotes standard deviation
Sigma ( )
® || absolute value
L
L}
¢
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SUMMARY

Growing interest in microwave devices utilizing the cyclotron
maser Instability has motivated investigatlon of improved techniques for
generating the high transverse velocity electron beams required for
efficient operation. One approach which has recently been suggested is to
combine a confined-flow Pierce gun with the transverse magnetic field of a
bifilar helix. The Pierce gun generates a high quality, low transverse
velocity beam and the helical magnetic field deflects the beam developing
the perpendicular velocity. The basic characteristics of this
combination, called the helix gun or H-gun, have been studied analytically
and computationally for two helix configurations. In one case the helix
magnetic field gradually increases over several helix periods, adiabatic
entrance, and in the other, the field is assumed to increase to full
amplitude over a distance negligible compared to the helix period,
nonadiabatic.

The relationship between the transverse beam velocity and the
applied axial focusing and helical magnetic fields was explored
analytically using the lowest order approximation to the helix field. A
resonant enhancement of the helix field was found to occur when the axial
cyclotron wavelength was approximately equal to the helix period. This
resonance can be exploited to reduce greatly the helix field needed to
achieve a given transverse velocity. For cyclotron wavelengths close to
but longer than the helix period, the electron orbits are found to be
unstable to perturbations. Expressions have been derived to relate the
transverse velocity to the fields for the adiabatic and nonadiabatic
cases. By normalizing the magnetic fields, curves which are valid for all
H-guns can be drawn relating the field magnitudes and velocity.

To examine the effects of the helical field on beam velocity
spread, Improved models of the helix field are needed. Expressions for
the off-axis fields of an infinite bifilar helix were found in the
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literature. These formulas were extended to include multiple wire coils
and corrections to the fields for the adiabatic entrance case. Equations
were also derived for the on-axis fields of a semi-infinite nonadiabatic
helix. The more accurate field expressions are complex enough that
general analytic work is not possible.

The improved field models were included in a trafectory code and
the beam characteristics at the helix exit were 1investigated
computationally. The agreement between the analytic results and the
computations was reasonable, especially for the nonadiabatic entrance
case. For both helix types the beam velocity spread was found to increase
as the resonance was approached. The unstable region where the cyclotron
wavelength 1is longer than the helix period was found to generate
substantially higher velocity spreads than other regions. The adiabatic
entrance was found to generate slightly higher quality beams than the

nonadiabatic entrance.

The computational results indicate that beams with velocity
ratios, a = B}/B,, of approximately 1 at the exit of the helix can be
generated with less than 2% axial velocity spread. This level of
performance would certainly make the H-gun competitive with the magnetron
injection gun. The slightly higher beam quality and greater flexibility
of the adiabatic helix suggest that it should be the preferred
configuration for resarch and proof-of-principle experiments. In
situations where ease of fabrication, compactness, or efficiency are most

important a nonadiabatic helix is more appropriate.

Future research on H-guns should include important beam effects,
such as self fields and improved models of the helix field. In addition,
H-gun related configurations using hollow beams and/or different types of

transverse magnetic fields should be investigated.
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SECTION 1
INTRODUCTION

One source of problems in the design and operation of gyro-
devices is the magnetron-injection gun (MIG) which produces the high
transverse velocity electron beam. MIGs operate with crossed electric and
magnetic fields so that the electron beam is formed and given large trans-
verse velocities at the same time. Because beam formation and production
of transverse velocity are combined, MIGs are fairly inflexible, Changes
in voltage or magnetic field generally require a new design. (MIGs do not
scale as well as Pierce guns.) Even changes in the operating current can
require design adjustments. Another problem is the high thermal spreads
(several %) caused by temperature limited emission. Thermal velocity
spreads can lower interaction efficiency and produce high noise levels
(which affects amplifier operation). Additional problems include high
cathode loading factors, and the inability to produce solid electron
beams.

Several new gun configurations are presently under investigation
to overcome the problems associated with the use of MIGs in gyro-devices.
The helix gun (H-gun) is one approach being considered for use in Navy
programs and has recently been used in a gyro-TWT experiment1 with
encouraging initial results. The H-gun completely separates beam
formation from the problem of imparting large transverse velocities to the
electrons., The gun used for beam formation can be any of several standard
designs which produce beams with 1little or no perpendicular velocity
(e.g. Pierce guns). Perpendicular beam velocity Is produced by propagat-
ing the beam through the transverse magnetic field of a bifilar helical
winding, The H-gun system has the potential of generating high quality
beams (low axlal velocity spreads) while permitting wide variation in

magnetic fields and transverse velocity.,




A schematic of a possible H-gun configuration is shown below in
Figure 1-1. In this example a confined-flow Pierce gun generates a solid
beam which is focused into a uniform axial and helical magnetic field.
The helical field generates transverse velocity on the beam. The beam is
then extracted from the helix and compressed into the interaction region.
There are several advantages to this configuration. The electron gun can
be operated space charge limited yielding a longer cathode life, grid
control, and lower beam noise. The use of a confined flow laminar
electron gun permits greater variation in beam voltage and magnetic
field. Controlling the transverse velocity with the helix magnetic field
gives an independent "knob" which can be used to tune the beam character-
istics. In addition to these factors, H-gun designs are easily scaled to

new parameter domains.
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Fiqure 1-1. A possible H-gun configuration; region 0 is a confined-flow
Pierce gun and bifilar helix, region 1 is the adiabatic mag-
netic compression, and region 2 is the RF interaction space.

The following sections of this report will discuss the =ffects
of the helical field on the beam properties at the exit from the helix,
The next section will discuss beam motion in a uniform axial and "ideal”

helical magnetic field. The general properties of the beam motion and the

relationship between the fields and the beam velocities will be de-’

scribed. Section 3 will discuss models of the helix field that are closer
Lo what can be achieved in the laboratory and how these changes affect the
heam properties. Section 4 will present the results of computer calcu-
lations of heam propagation in the comhined fields with the more realistic
helix models.  H-gun design and scaling laws will be described in Section

5, and conclusions presented in Section 6.
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Before proceeding to the technical discussion some general
comments about this investigation and beam quality issues should be made.
In order to concentrate on the effects of the helical field on the beam,
space charge forces have been ignored. In addition, the electron beam i3
assumed to have no initial transverse velocity. The impact of these
simplifications can not be ignored in the development of practical guns.
One must emphasize that in order to extract a high quality beam from the
helix, a high quality beam must be injected. Thus, beam quality in the
H-gun must start with the Pierce qun design. If the gun is designed well
and a laminar, low ripple beam is injected into the helix, then perfor-
mance levels close to those discussed here should be achievable even with

space charge effects.

The quality of the beam in the RF iInteraction section also
depends on the magnetic compression between the helix and interaction
regions. The adverse effects of the compression can be ifllustrated by
referring to Figure 1-2. These curves relate the velocity ratio, a =
Bl/B,, at the helix exit to the ratio in the interaction region
through the compression ratio, R, Clearly, the compression magnifies any
velocity spreads which exist at the helix exit. (This is a problem which
also occurs in the MIG.) The H-gun configuration has the potential of
eliminating this problem by generating the transverse velocity in an axial
field of the same magnitude as the interaction field. In order to operate
the H-gun in this mode one must be able to generate large helical fields.
Under the appropriate circumstances helical fields of many kilogauss can
be generated with either permanent magnets2 or cryogenic bifilar
helices®. Although these systems are not appropriate for experimental
study of the H-gun, their potential must be kept in mind when considering

H-gun designs for actual devices.

One further comment on the design of H-guns should be made. The
results presented here should prove useful as a guide to selecting H-qun

parameters and to scaling successful designs. However, there can be no
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substitute for doing detailed calculations on the specific system to be

used in an experiment including as many of the physically important -
effects as possible. This approach coupled with experimental diagnostics
is presently the only method that will provide the detailed information
necessary to validate the H-gun concept.
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SECTION 2
IDEAL HELICAL FIELD H-GUNS

In this section the basic properties of beam motion in uniform
axial and ideal helical fields will be developed. "Ideal" means that the
field magnitude is constant and that the field orientation depends only on
z. A coil that would produce a helical magnetic field is shown schemati-
cally in Figure 2-1. The magnetic field near the axis of such a coil
closely approximates an ideal helical field. Over the past two decades a
great deal of research has been published on electron orbits in these
flelds“'lo. Exact solutionssv10 can be obtained for the particle
orbits, but the expressions are somewhat cumbersome and tend to distract
one from the general physical features of the motion. Here, we will
concentrate on two cases of particular interest to the H-gun, the limits
of adiabatic and nonadiabatic increase of the helix field. Readers
desiring more detailed information on the general orbits should consult

References 4-10.

The combined magnetic fields are given by the equation
B = Bh(excos sz + eysin sz) + esz

where ;1 is a unit vector in the ith direction, B, is the helix field
magnitude, B, is the axial field magnitude, ky = 2w/L, and L = helical
field period. Electron orbits in the field were studies using the above
magnetic field in the Lorentz force and the relativistic Newton's

equation, After some algebra the equations of motion can be written as

Bx = Bzwhsln sz - szy
By = mZBx - thz cos sz (1
Bz = w (Bycos sz - Bxsin sz )
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where B; = vijle, ¢ = speed of 1light in vacuum, 4&,, =
eBn,z/meY, are the helix and axial magnetic Ffield cyclotron

frequencies, and stands for differentiation with respect to time,
There are two constants of the motion which can be derived from these
equations. The First is conservation of energy and is easy to derive.
The second 1is somewhat more complex and depends on the simplified form

that has been chosen for the helical magnetic field. These constants are

given by
+ 3% - 82 4 8% + B2 (2)
o X y z
Ckw mZ 2
Co = Bx cos sz + By sin k2 - ” (Bz - " ). (3)
L h w

These constants along with equations (1) can be solved to give the exact

orbitss’10 for arbitrary initial conditions. The two cases chosen Ffor

investigation here do not require the Ffull power of this approach, so at
this point we will tailor the equations to the examples.

The adiabatic helix will be considered first. In an adiabatic
helix the field magnitude is gradually increased in an attempt to place
the electrons on constant axial velocity orbits. Taking the second time

derivative of the x and y velocity components in (1) gives

o6 2 e

ﬁx + “sz = thZ(wz + chkw) cos sz + thZ sin sz

[X) 2 . (4)
By ¥ wZBy = thZ(wz + cBka) sin sz - thz cos sz .

If the Ffield entrance is adiabatic enough, then the B, terms in (4) can

be set equal to zero in the uniform helix field section. This leaves the
well known equation Ffor a harmonic oscillator with a forcing function,

The particular solution is the one of principal interest; however, the ‘. 'flﬁ

-10- | ]




homogeneous solution will be included as a perturbation. The approximate
L solution to these equations is shown below.

B, = B] cos k .z + & cos (wzt +0)
b By = B| sin kz + 6 sin (wt + Q)
B, = B, -8 cos (wt-kz-+ Q) (5)
x = r| sin k z + & sin (wzt + Q)
y =-rjcoskgz- ércos (wt+ Q)
where . w Bzo
| =

w -ck B
z w z0

r| = a/kw, a= B_L/B or = c&/mZ

zo’
B, = (Bi - Bj_ )1/2, 8, = total velocity/ec

th
62 = , and Q@ is a phase constant.
w_ - ck B
z w 2o

This solution assumes that the z axis is the guiding center of the orbit,
and that the following order holds

8] 182)« Jal| < |&z]

and
r]l €a<L.
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Although based on a simple model, there are several general features of

the motion expressed by the above equations which will be found to carry
over into more complex approximations to the H-gun,

The electron orbits are helical with the same basic period as
the helical magnetic field. Small perturbations, due to the entrance and
other factors, cause oscillations at the cyclotron frequency of the axial
guide field and at the beat or difference frequency between the helix and
guide cyclotron frequencies. One 1important characteristic 1is the
gyroresonance which occurs when the cyclotron wavelength is approximately
equal to the helix period. This leads to the resonant denominator (w, -
ckyBz0). The gyroresonance enhances the magnitude of the helix field
and thereby increases the transverse velocity produced by a given helix
amplitude. Note that the effects of perturbations on §, are enhanced,
and that the axial velocity perturbation has a period which depends on the
proximity of the guide field to gyroresonance. An effect which becomes
important when devices and realistic fields are considered is the shift of
the beam centroid off-axis. The beam center is shifted by an amount which
depends on the helix period and the velocity ratio. For large velocity
ratios the shift off-axis can be considerable. Note that the radial shift
due to the perturbations has an absolute dependence on the quide field,
being smaller the higher the field.

In order to solve for the quantities in these equations,
conservation of energy must be used, eq. 2. This leads to a fourth order
equation in the axial velocity. The orbits split into two types which are
determined by whether the axial field is above or below the gyroresonance,
f.e., w;, > ckyBzo, type II, or < ckyBzo, type I. Examination of
perturbations of these orbits shows thal the type I orbits become
unstable® at

_ 2,.3/2
w = ckw80(1 + a’) ,

-12-
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and remain unstable until o, > ckw80(1+a2)'1/2.

The instability
occurs because of the gyroresonant denominator. If a perturbation
decreases the axial velocity, then, for type I orbits, this decreases the
resonant field and increases B8] which further decreases 8, and so on.

This instability can result in loss of the beam to the drift tube wall.

There are several ways of tapering the helix entrance field to
obtain an adiabatic transition: the helix radius can be tapered, the
current can be gradually decreased, the helix period can be decreased, the
wires can be transitioned from bifilar to quadrafilar to bifilar with
currents that cancel, etc. An example of an adiabatic transition that was
achieved by tapering the helix radius’! is shown in Figure 2-2. The
effect that field tapering has on accessing constant velocity orbits is
illustrated in Figure 2-3 where two orbits have been followed'2s13
computationally through the taper and into a uniform radius helix., The
transverse velocity builds up slowly in the taper region and then
oscillates in the uniform section. The average values of the velocities
in the wuniform section are in good agreement with 1ideal orbit
calculations. The periods of the oscillations are in excellent agreement
with the ideal orbit formula. The orbit represented by the solid line is
closer to the gyroresonance. Hence, according to the 1ideal orbit
equations (5), this orbit should have a larger and longer period
perturbation than the orbit which is further from resonance. As can be

seen in the figure, this is indeed the case.

In designing gyro-devices one is usually interested in achieving
a particular velocity ratio, a. The orbit equation can be arranged to
relate a, the helix field, and the guide field. Further, this equation
can be normalized to take Into account the beam voltage and helix
parameters. First we will define the transition axial magnetic field

mcz

BT - Bonw (6)

-13-
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This parameter takes into account the helix period and beam voltage. By
referring to the resonant denominator of Equation (5), one can see that
Bt is also the highest magnetic field for which It {s possible to drive
the denominator to zero. Another way to state this is that for B, >
By beam propagation Is stable. Now By can be used to normalize the
helix and quide fields:

v

Bh/BT = relative helix magnitude

=
|

= (BZ - BT)/BT = guide field relative to gyroresonance.

Using v and n in the expression for 8| gives

= v
- - : (7)
Ten - 8,78,
Applying conservation of energy gives
_ 2y_142
B,/B, = (1 + a%)
and
v=1{aln+n | (8)
where
A=1-(1+a2)-Y2,

Given a, Eq. (8) defines two straight lines (depending on the sign of a)
which relate the normalized fields needed to produce that a. A set of a
curves can be drawn which are valid for all H-qun designs. A set of Lhese
curves for several values of a are shown in Figure 2-4. Note that for n <
0 the lines cross each other and a becomes a multi-valued function of the
fields. This is the region that will not support stable ideal orbits.

One should also note that away from the resonance at n < 0, the helix
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field required to produce reasonably large a's becomes a sizable fraction
r of the guide field. For any set of v, n, and a values there are many
H-gun designs possible since the voltage, helix period, and real field

strengths permit variations.

L A similar analysis can be performed on a nonadiabatic helix. In
this configuration the helix field rises very sharply to its final level.
For analytic convenience we will assume that the field rises instantly to

a constant magnitude. The orbit of an electron which enters this field

with no transverse velocity is not a uniform velocity orbit. Instead the
particle velocity will oscillate from a = 0 to a = op3x. The helix
field and particle orbit are illustrated in Figure 2-5 below. We will
assume that the beam is extracted at the first position where a = opax.
For H-gun design purposes we need to find a relation between the fields
and a, and a relation between these factors and the axial position at

which opax occurs.

B

Figure 2-5 Illustration of the field profile and orbits in a nonadiabatic
helix entrance,

-18-




The equations of motion are more complex for the nonadiabatic

helix; however, using the normalized fields and the constants of motion

%naxs Yy and N can be related. Starting with the B, equation in (1),
squaring, using the constants of motion assuming no initial transverse

velocity, an elliptic integral solution for B, can be found. If only

the maximum @ is needed, then the B, term is zero and discarding the a =
0 solution, the following cubic is obtained

sAn? + 4a%n v A% L sav? C VP = 0

where A, N, V are the same as for the adiabatic case. For particular A's,

i.e. a's, this equation can be solved to relate the normalized fields,
v:J_____A [n+ A2| . (9)
2 - A

This equation is similar to Eq. (8) with a different slope and intercept
on the n axis. A set of @ curves for the nonadiabatic helix is shown in
Figure 2-6. As in the adiabatic case, there is a region where @ has a
multi-valued dependence on the fields. As will be shown in Section &4, the
region is "unstable" in that the beam is sensitive to small perturbations.
Comparing these curves with those shown in Figure 2-6, note the lower
helix field needed to achieve the same o. The trade-offs involved in

selecting which helix entrance to use will be discussed later.

Equation 9 can also be solved for ou,x given VvV and n, This
involves solving a cubic equation for A which can be done by standard
means“’. The Final item needed for a preliminary nonadiabatic helix
design is the axfal position at which the first u3x occurs. This can
be obained from .4e elliptic integral expression for B, and is shown
below For the cyse N + A/2 > 0,

1, (\/1-u2 A% - uV1-A%
H 1 -4

)1.(10)

T=kz=2 (pq)'”Z[ZK( u) -
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where
2 2 2 2 2 2
A = Amax, P = (E - A) + T y Q= E” + r
1 A% - (p-@) 4 1/2 . .
U= ( ) '%, £= Re(A=), T = Im(A=)
2 Pq
K is the complete elliptic integral of the first kind,
and At = complex conjugate roots of the cubic.

Solutions can also be obtained for n + A/2 < 0, but the calculations are

more complexsalo.

Analysis of the ideal helix field H-gun has led us to a set of
design curves for achieving specific a's and the realization that the
gyroresonance can be used to greatly reduce the required helix field.
Thus, the generation of high o beams is possible by exploiting the
gyroresonance effect. The question of whether beams generated in this
manner will be of sufficient quality will be addressed in Section & after
improvements are made in the helical field model.
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SECTION 3
REALISTIC HELIX FIELDS

The previous section has shown that large transverse velocities
can be generated with reasonable helix field magnitudes. The H-gun thus
satisfies one of the criteria for use in gyro-devices. The issue which
remains to be explored is beam quality. In order to examine beam quality
in H-guns, more accurate models of the helix field must be used. Velocity
spreads occur when particles experience different forces, depending on
their position in the beam. The ideal helix model applies the same force
to all particles in a cross section and, thus, is inadequate for studying
the helix induced velocity spreads.

The exact field produced by an infinite bifilar helical winding
of infinitely thin wires has been known for some time!Ss ", Equations
for the fields along with the two simplest approximations are shown

belcw.

BIFILAR HELIX MAGNETIC FIELDS

B, =By 2 nKplnk, o) I {nk, r)SIN n(8 -k, 2)

Bo* Bo £ 5 Kp (nky ) In(n k,, r)COS n(0-k, 2)
w

B;*-By ZnKp (nkyo)Ip{nk, r)COS n(€-ky 2)

N © k'
Where z,- 2 . 80-20—"

m
I k,,-%_—, ashelix radius
n=1, 3,9,

The First Order Fields

B = By K; (ke 0) I/ (K, r) SIN{©-ky 2)

Iitk, 1)

B * 8o Ki (ku 0) =2

COS (8 -ky 2)
B; * =B, Kj(ky 0) I,(k, r)COS (6 -k, 2)

On Axis (Set o= 2)

By * B, COS k, 2
By* 8B, SINK, 2z
B, * 0

! '
8, "Z_BQK,“(' a)

=22-
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The I and K Functions are the modified Bessel functions of the First and
second kind respectively. (Sets of coils will not be considered here in
detail to avoid unnecessary complications. This refinement is taken into
account in the numerical calculations.) Along with the presence of odd
harmonics, there are two important departures from the ideal field. The
first of these is the radial variation in the field which occurs through
the I and I' functions. The second is that the direction of the field
depends on the radius and phase since the radial dependence of the B,
and Bg components is not the same. A plot of the dependence of the
first order field magnitude on radius and phase is shown in Figure 3-1 for

a 3 cm period helix. Note that the variation increases with radius.

In addition to the more accurate expressions for the field in a
uniform radius helix, there are several factors which must be considered
when modeling actual helices. Since a laboratory helix can not be
infinite, end effects will have to be taken into account. Also, if the
radius of the windings is flared to taper the entrance field, then the
uniform radius equations are no longer completely valid and corrections
must be made. If the field taper is very gradual (over at least five
helix periods), an adiabatic approximation can be made (see Figure 2-2).
The zero divergence requirement on the helix field, V*B, = 0, can be
satisfied by adding terms to B, and Bg which depend on the derivative
of the field magnitude with respect to axial distance. If the field taper
is not gradual, then substantial differences occur and numerical methods
must be used to evaluate the field. This case will not be considered

here.

End effects in a uniform radius helix can be investigated by
direct inteqratlonlbv17 of the Biot-Savart equation. There are two
problems which must be examined. One is the effect caused by ending the
helical windings. By this we mean that the helix no longer extends from -
® to *® hut starts at some Z,. The lack of coils Ffor Z < Z, leaves
terms in the equations for the Field due to contributions from the Z >

L, coils which would otherwise be cancelled.
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..........

The other effect is caused by the way in which the helical windings are
% joined at the end to complete the current circuit. The equations for the
on-axis fields of a uniform radius helix which starts at z = 0 and extends

to « are shown below.

bo{(HC(e,E)‘ - Kj(e) sin £+ _;‘_ (L3(e) - LiCe)

—
(==
x
"

P 2.2 HS(e,£)) cos £ - (€2 + 62)-1/2}

‘ TE Li

B = b {~(HC(e,E) - K:(€)) cos £ + 1 (I'(e) - L!(e)
y o 1 > 1
v 2 - 2 Hs(e,£)) sin £}
ne n
where b, = ekwI(amps)/S, € = kwa, £ = sz, a = helix radius

I, K are the modified Bessel functions, L is the modified Struve

function
E (1 + e2 + x?) cos x dx
HC(e,E) = Io , helix cosine integral,
(e + x2)3/2
2 2
and HS(€,E) = fg (1 + € + x7) sin x dx , helix sine integral.
(e2 + x2)3/2
-0
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} The Following properties of HC and HS are useful in examining

these equations:

HC(E,|£|)

-HC ( e,-| E')

HS(e,|£|) HS(e,-|£|)

HC(€,0) = HS(€,0) = 0

: ' 1T ()L
] climC = (o), gljmtts = Lo T rjcaLicen

Note that B, is no longer zero at z = 0 and that a nonsinusoidal term
‘ occurs. By, has picked up a sin(kyz) dependence, and since HC = 0 at §&
= 0, the value of By is half the infinite helix value. As & * =  the
term involving HC goes to -2K|‘(6) which 1s the infinite helix value. The

term involving HS goes to zero, and the on-axis infinite helix field is

recovered. As & * - =, HS does not change sign, so that term still goes
to zero. However, HC does Flip sign so that term also goes to zero, and
the helix field dies out.

In order to close the current path for the semi-infinite helix,
we will assume that at the end of the helix one of the windings is split
into two wires and connected to the other winding by wrapping the wires in
opposite directions. This produces the following field on axis:

€ A

B =b - e .
—-loop 0
(ez . €2)3/2

When this term is added to the helix field, both the By and By terms

have nonsinusoidal components. The By component, however, dominates
2 ,

since it has a (€2 + € y-1/4

for the combined Fields are plotted in Figures 3-2 thru 3-4 for three

dependence.,  The By and By components

ratios of helix radlus to period. Clearly, the perturbation in By
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dominates and becomes much larger than the infinite field value for large
e's. The normalized field magnitudes are compared in Figure 3-5. For
large e's the entrance perturbation is not only large, but extends over

2-3 periods. For € { 2, however, very sharp, nonadiabatic transitions can

be achieved.

Investigation of beam quality in a semi-infinite helix would
require solving the fields everywhere in space. One or two radii into the
helix the field will closely approximate the infinite helix field off-
axis, bhut the region around the helix entrance may be considerably
different. Solution of this problem is certainly possible using an
orthogonal function expansion in cylindrical coordinates. Unfortunately
time did not permit the completion of this work or inclusion of the on-

axis fields in the numerical calculations.

The gradients of the helix field generate spreads in velocity
over the beam cross section. In addition to the variation of the off-axis
field in the uniform section, one must consider the gradients produced by
the helix end effects. The uniform section gradients are driven by the I;
(kyr) terms. These can be kept small by choosing a helix period such
that kyrpeam € 1. The end effects present a different problem. As we
have seen, the relative effect of ending the helix can be reduced by
keeping a/L small (see Figures 3-2 thru 3-4); however, the gradients
associated with this may be high over a small region. Requiring rpegm/a
« 1 is too restrictive a condition on the beam. For the nonadiabatic
helix, this is a problem that will simply have to be tolerated. For the
tapered radius adiabatic helix, the end gradients are greatly reduced and
present only a minor problem, provided a/L is kept reasonably small in the

uniform section.

Additional features of realistic helix fields which must be
considered are the harmonic content of the field and the current required

to qenerate the desired field magnitude. As shown previously, the field
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from a thin wire bifilar helix has many odd harmonics. Actual H-guns will
‘ use coils of wire in the helix, and hence the harmonic content will depend
on the coil geometry. For an infinite helix, if the coils are assumed to
he centered symmetrically on z=0, then the following equation can be

derived for the harmonic amplitudes:

b A= 1 cos (nk,z) ) nk,a(z) Kl (nk a(z2)) ,

where the sums are over the wire positions in the coil cross section, each

wire is assumed to carry the same current, and z is measured relative to
the center of the coil (refer to Figure 3-6 below). Using this formula it
is easy lo show that a rectangular coil cross section extending from z =
-L/6 to z = L/6 will qreatly reduce or eliminate the third harmonic.
Since KL (nkwa) drops rapidly with increasing harmonic number, elimination
of the third harmonic essentially eliminates all of the higher harmonics.
If the beam approaches the helix radius, this is no longer true and the
higher harmonics must be accounted for. For a solid beam as long as

]= uhelix/kw <a

b
Lthen harmonics should not be a problem,
The first order helix field magnitude on-axis is given by

Bh(o) = 2 kwI(amps) (kwaK;(kwd)/S.

coil cross~section

z >

%////%///%///(// 7
a(z)

e

[SURSSUUIUURUUUUUUNNS HIURUS RS e

=

Fiqure 3-6 o

]

"9
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As kya increases K'1exponentia11y decreases, and if the field is kept at
the same value, then the required current rises exponentially. This is a
compelling argument for keeping the helix radius small compared to the
period. This suggests that H-gun designs should utilize as long a period
as possible, This can not be pushed too far, however, because the
off-axis shift of the beam increases with increasing period. Physical
limits are imposed on this shift by the drift tube and, in addition, the
harmonic amplitudes, which grow larger as the radius is increased. Taking
these factors into account a reasonable range of operation for H-quns

would be
0.7 < kya < 3 ,

depending on the exact parameters of the problem.




SECTION &4
H-GUNS WLTH REALISTIC FIELDS

Beam propagation in realistic helix fields was investigated
computationally with the TRACK-3 computer code.}?5 13 TRACK-3 includes
fully relativistic equations of motion and full, three-dimensional
fields. The complete bifilar helix fields are included with appropriate
modifications for multi-wire coils and adiabatic corrections to the
entrance field. For the H-qun study a cold, solid, monoenergetic electron
beam was simulated with 62 rays. A uniform axial field and a first order
helix field were applied. Both adiabatic and nonadiabatic entrance fields
were studied, but a nonadiabatic exit was assumed in all cases. The
general features of the beam properties at the exit of the helix will be
discussed first. Then specific examples will be given based on the
parameters used in a recent H-gun experiment.1 Throughout this discussion
keep in mind that the comparison between the adiabatic and nonadiabatic
helix transitions is based on field approximations that are not exactly
equivalent in accuracy. For reasons detailed in the previous section,
velocity spreads in the nonadiabatic H-qun are slightly lower than they
should be.

Most of the characteristics of the adiabatic H-gun can be
qualitatively understood based on the ideal orbits and the realistic helix
field. The general properties of the adiabatic H-gqun were studied using a
seven period transition from zero helix field to full magnitude. Details
will change according to field profile, number of periods, beam radius,
and other factors, but the general observations made here hold for all
adiabatic transitions. Important characteristics of the ideal orbits are
the instability which occurs for type-I orbits, and the lIncrease in the
velocity perturbation as the gyroresonance is dapproached. Both effecls
are evident in Figures 4-1 and 4-2 which show the magnitude of the

velocity perturbation as functions of the normalized quide and helix
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fields respectively. The velocity oscillations by themselves are not
detrimental to H-gun operation; they simply make the exit a harder to
predict. However, remember that the helix field now varies across the
beam and the gyroresonance will magnify these field differences. Thus,
the same factor§ which cause the velocity oscillation to increase will
give rise to increased velocity spreads. This is shown in Figures 4-2 and
4-3 where the velocity spread is plotted as a function of the helix field
and the quide field respectively.

The results of these TRACK-3 calculations can be summarized as follows:
1) Increasing a results in increased velocity spread.

2) Increasing the helix field produces less velocity spread
than moving closer to gyroresonance (see circles in Figure
4.2).

3) Operation above gyroresonance is preferable to below for

these reasons:

a) no instability

b) reduced sensitivity to perturbations

c) to operate above resonance requires either higher quide
fields or longer helix periods; both improve beam

quality and stability.

4) Predictions of o based on the ideal approximations and the
results from computer calculations are in only modest
agreement for the adiabatic case, particularly at high «a.
This is because of the inability to estimate accurately the
perturhation velocity, 8, caused by the adiabatic entrance.
This problem is severe around the gyroresonance, resulting
in almost nonadiabalic performance. Further from resonance

predictions and calculations are in much better agreement.
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5) The exit a of an adiabatic H-gun is tunable over a wide

range provided sufficient helix field magnitude can be
» generated. Gradual decreases in helix field result in
equally gradual decreases in a, and increased helix field

results in increased a.

? Nonadiabatic H-guns were modelled with an instantaneous increase
of the helix field from zero to the full, first-order field of the
infinite helix. For a/L £ 0.3, the sharp field rise is probably not a bad

approximation. As discussed in Section 3, gradients due to end effects

were not included; hence, the velocity spreads should be slightly higher
' than predicted. Comments (1) - (3) above hold for nonadiabatic H-quns as

well as adiabatic ones. The final comments differ for the two cases.

4') Predictions of a for the nonadiabatic H-gun are in good
agreement with calculations. Generally the peak calculated
a is 5-10% higher due to the increased transverse field off-
axis. This better agreement is due to the more accurate
treatment of the orbit equation and the beam initial

conditions.

5') In the nonadiabatic H-gun, a is generated over a shorter
distance and with less helix field than in the adiabatic
H-gun. The price one pays for this is a higher velocity
spread and less tunability. Remember that in the
nonadiabatic case, both on,;x and the position at which it

occurs depend on the fields.

These points will be illustrated by reference to a specific

example, Lhat of a recent H-qun experiment at Varian Associates' Palo Alto

tube division. The output beam characteristics for the conditions under
which the experiment was run'® are shown in Figures 4-4 and 4-5. The

quide field was operated below resonance, and the H-gun was in a

Lt
TSR SNy

nonadiabatic confiquration. The heam was extracted well after reaching
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Gnax With the output shown in the figures being the approximate design a
for the experiment. The axial velocity spread at the helix exit is
calculated to be approximately 3%; however, in this case since the bheam
has been allowed to "bounce", the velocity spread is probably higher due
to space-charge and other effects. When compressed into the interaction
region, the spread would have been much worse. The output for the same
helix parameters, but with the quide field raised above gyroresonance, is
shown in Figures 4-6 and 4-7. Note that a significant improvement in
performance is predicted if the helix is shortened to = 25 cm and operated
above resonance. For approximately the same a, a velocity spread of 0.8%
is predicted. Again this number is low but probably ‘less so than in the
first case, since the helix lenqgth would be shorter and the orbit would

nol be allowed to "bounce".

An equivalent adiabatic H-qun designed to operate at the same
conditions as used in Fiqures 4-6 and 4-7 is shown in Figures 4-8 and
4-9, The performance is similar except that the adiabatic helix 1is
longer. The velocity perturbation issue occurs here in the sense that the
helix field calculated from the ideal approximation is three times the
field needed to give the desired output. The guide field for this case is
very close to the gyroresonant value. Note that the output a here is
tunable. (Compare the transverse velocity build-up in the two cases.)
Lower helix fields will result in correspondingly lower a's and, up to a
point, higher fields will result in higher a's. Operation further from

the resonance would agree more closely with ideal field calculations,

The next qraph, Fiqure 4-10, illustrates the problems one might
encounter in tuning a nonadiabatic H-gun. This run was for the same
parameters as for Fiqures 4-4 and %-5, except that the helix current was
reduced by 38%., One might expect to improve the beam quality by lowering
Gngx 0 the desired output level and moving opax to the exit.
However, by reducing the helix field by 38% the exit a has been reduced by
almost 100%, and the peak has been moved from 43 cm to 30 cm. This

emphasizes the need for very careful design of nonadiabatic H-quns.
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The last two figures in the sequence (Figures 4-11 and 4-12)
show operation of the adiabatic H-qun below resonance (c.f. Figures 4-4,
4.5, 4-6, and 4-7). The quality of the beam is slightly better than the
nonadiabatic case, but is inferior to the above resonance adiabatic case.
Note that a higher helix field is required, because the axial field is
further from resonance.

Some general conclusions about the two types of H-gun designs

can be drawn from this data.

1) Experimental investigations of the H-qun should probably use
an adiabatic helix designed to allow operation far above
resonance as well as close to resonance in order to achieve
high beam quality and tunability.

2) If beam quality is the most important consideration, then an
adiabatic helix should be used.

3) If compactness and efficient generation of o are the

critical factors and only limited tunability is required,

then a nonadiabatic design is superior.
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3 SECTION 5
. DESIGN AND SCALING OF H-GUNS

The previous sections have developed the general characteristics

of H-gquns and how the various parameters interact. In this section the
use of this information to design H-guns will be considered. Lacking a

PN

base of experimental results from which to draw, no final set of design
rules can be established; however, with the general features developed in

the previous sections, an outline for H-qun design can be given.

s ) l.‘:.;j

The theory which is applicable to the particular gyro-device
heing considered should provide the frequency, beam voltage, interaction
a, and interaction guide field (Bz). Once these factors are established,

then the interaction parameters are related to the helix exit parameters

through conservation of energy and canonical angular momentum. At this

¥
PP UEY

point a choice must be made regarding either the magnetic field ratio or
the a at the helix exit (ay). Choosing either one determines the value

of the other through the equation, .

2 _ Ra? E'Fﬂ

% = 1+ a2 - Ra2 * j'..v 5

I

The «, value determines the lines on the ideal H-gun curves (see Figures :Tj

2-4 and 2-6) which relate the fields and helix parameters. Then selection 1
of n, v, or the helix period determines the remaining values.

Having determined the helix parameters, one should now check to -

see if the criteria given in the earlier sections are satisfied. The i.f

H-qun should not be operating too close to gyroresonance and, if possible, 'ﬁ}%

should bhe operated above resonance. Also the period must be long enough 7fig

to ensure that rpeam/L € 1. If the design passes these tests, then

calculations should be done to determine the necessary helix field
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magnitude. In general the required magnitude should be less than the

ideal H-qun value, because the fleld lncreases off axis. MNow one must
determine if a helix can be designed Lo generate this field. Here, issues
of wire size, coil cross section, and cooling must be considered. In the
section on realistic helix fields recall that efficient field generation
depended on keeping the helix radius small compared to the period. Also
the nonadiabaticity of the exit (and entrance) depends on a small ratio.
Taking these factors into consideration, a reasonahle upper limit on the

radius to design for is
kwa < 2.
In addition we must also require
r] < a
or af < kya .

This imposes a limit on the maximum helix period (or minimum radius) in
order to prevent beam scraping. This limit should not be approached too
closely in order to keep the beam a reasonable distance from the drift
tube wall., One method for estimating the current required to produce the
necessary field is to use the expression in Section 3 for the on-axis
field magnitude with the helix radius set equal to the radius of the coil

centroid and multiply by the number of wires in the coil. Thus,

B

Ih(amps) = 3
0.0 ak® K!(k a)
c w 1w

y 4 = Ceentroid
Nc = # of wires in the coil.

If this current is consistent with wire size and cooling constraints, then
a workahle set of parameters has been determined. If not, then either the
helix period must be changed to shift the H-gun closer Lo resonance, a
smaller helix radius mist be used, or a new magnetic ratio or exit a must
be selected. An example using the parameters of Reference 1 1is shown

below.
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Interaction parameters: f = 5,2 GHz
v =65 kV

= 1850 G
= 1.5

o]
N
|

[+
R

select R = 1/2.5: %@ = 62
= 740 G

=)
—
i

select L * 6.67 cm: B, =836 G

-0.11
v = 0,025 adiabatic
0.01 nonadiabatic

=3
w

R

In Section & it was noted that if this H-gun had been operated
above resonance, then the beam quality would have been improved. If the
period had been lengthened to L = 7.54 cm, the H-gun would have operated
above resonance; the compression ratio could have been changed to R =
1/2.2 to achieve the same result. Changing R would require a change in
o, from 0.62 to 0.68.

Once an H-gun design has been developed, tested, and Found to be
satisfactory, it can be scaled to other parameter domains by keeping
certain normalized values and ratios fixed. Holding N and Vv constant will
keep the exit @ constant. If the ratfo of beam radius to helix period
is also held constant, then the velocity spreads induced by the helix
fields will be the same. For example, suppose that a shift in interaction
frequency is desired, but the beam voltage is to remain constant. Set

T = Af,
then Bz = MBu(Ty.q, = Tw.q./N
R =R
By = A8y
T =L/ ;f;jif
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In order to leave n, v, and o constant,

B, = A By

and
Bh A Bh .

Similar velocity spreads require

T, =
beam

/A

r
beam

or

/L /C = constant .

Tbeam'~ = Tbeam
If the helix coils are scaled by 1/, then the harmonic amplitudes are
constant (see Section 3), and the helix field is automatically scaled if
the helix current is the same. Scaling the helix coils in this manner can

not be extended too far before the wire is unable to carry the current.

Thus, H-gun performance can be scaled by holding v, n,
Theam/L, and a/L constant. Shifting to new parameters may require a new
Pierce gun design in order to adjust the beam radius and keep beam ripple
low. Two examples of scaling an H-gun design to higher frequencies are
shown in Table 5-1. In each case the factors listed above are held
constant, and, as can be seen, the performance characteristics are almost
identical. Each of the helices listed in the table is buildable. The
fabrication and necessary current-carrying capahility would pose no

problems for current technology.
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TABLE 5-1
H-GUN SCALING
kwrbeam = .31, kwa = 1,6
b n #2 3
scaling factor - A - 7 19
cyclotron frequency - GHz 5 35 25
b beam voltage ~ kV 60 60 60
magnetic compression ratio 1/2 1/2 1/2
helix period - cm 6 0.85 0.1
helix current - amps 22 22 22
transition field - kG 0.89 6.26 16.98
n 0 0 0
v .05 .05 .05
computed @ 0.87 0.88 0.86
computed o(q1)/ah 2.4% 2.4% 2.6%
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SECTION 6
CONCLUSIONS

The final question that must be addressed is whether the H-gun

concept is a workable and competitive alternative to today's magnetron

) injection guns. In our opinion the results of the preceding sections
clearly indicate that the H-qun can be at least competitive with MIGs and,

in certain situations, may be clearly superior. Let us consider a few

| specific points:

Flexibility- The characteristics of the beam can be adjusted over a wide
range of values by changing the bifilar helix or the Pjerce
gun, or both. Even with a fixed Pierce gun and helix,

) changes in voltage and axial field can be accommodated by

adjusting the helix field. This is particularly true for

adiabatic designs. H-gun flexibility is a clear plus for

experimental research.

Beam Quality- Without space charge effects it appears possible to generate
beams with a = 1 and axial velocity spreads AV,/V, < 2%
directly at the helix exit. Space-charge effects will
increase the velocity spreads but probably not enough to
make the H-gun worse than the MIG. At currents where the
space charge is negligible, there should be very little
degradation of velocity spread. The velocity spread can

even be adjusted by changing the beam radius.
Beam Power-  The H-gun can generate very high power beams with little or

no modification, provided the beam radius is kept within

reasonable limits.
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Size- Here the MIG is superior, at least for modest electric
fields in the qun region. The length required for beam
formation and the helix will always make the H-gun larger.

Helix Field
Requirements- The helical magnetic field does not have to be produced by

electromagnetic coils. Both superconducting and permanent
magnet designs are possible. These would reduce power

requirements and could generate fields of several kilogauss.

Future H-gun research should include space charge effects and
more realistic beam initial conditions. When possible, calculations
should be extended to the interaction region. In addition, there are
other configurations similar to the H-gqun which might prove interesting.
For example, there is no reason that the H-qun could not be operated with
a hollow beam. Or, instead of a helical field, an oscillating linear or

radial transverse field could be used to generate transverse velocity.
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